Simulation Models in Industrial Engineering

Spring Semester, 2022 – 2023 Midterm Review

Outline

Lecture 1: Introduction to Simulation Lecture 2: Simulation Examples Lecture 3: General Principles of Simulation Modelling Lecture 4: Review Statistics Lecture 5: Random Numbers Lecture 6: Random Variate

Introduction to Simulation Lecture 1

Introduction to Simulation

Review questions:

- 1. What is a Simulation?
- 2. When to and NOT to use Simulation?
- 3. What are advantages and disadvantages of Simulation?
- 4. What are some areas for applications of Simulation?
- 5. What are systems, system environment, and components of a system? Example?
- 6. Distinguish discrete and continuous systems! Example?
- 7. What are models and some model types of a system?
- **8. What are some methods to study systems?**
- **9. What are steps in a simulation study?**

Introduction to Simulation

8. What are some methods to study systems?

Introduction to Simulation

- **9. What are steps in a simulation study?**
	- ⚫ Four phases:
		- Problem formulation, setting objective and overall design (step 1 to 2).
		- Modeling building and data collection (step 3 to 7)
		- Running of the model (step 8 to 10).
		- Implementation (step 11 to 12).
	- An iterative process.

Bonus questions!

What is the most important step? Why?

Simulation Examples Lecture 2

Simulation of queueing system

Single-channel queue

Figure 2.2 Service-just-completed flow diagram.

Figure 2.3 Unit-entering-system flow diagram.

Simulation of queueing system

Single-channel queue

Table 2.10 Simulation Table for Queueing Problem

Simulation of queueing system

Single-channel queue

Or

Average time customer spends in the system = average waiting time + average service time = $2.8 + 3.4 = 6.2$ minutes

Simulation of queueing system

- Single-channel queue
- Simulation of a two-server queuing system

Simulation of inventory system

Other examples of simulation

General Principles of Simulation Modelling

Major concepts in simulation

- **System** A collection of entities (e.g., people and machines) that interact together over time to accom-
- plish one or more goals.
Model An abstract representation of a system, usually containing structural, logical, or mathematical relationships that describe a system in terms of state, entities and their attributes, sets, pr events, activities, and delays.
System state A collection of variables that contain all the information necessary to describe the sys-
- tem at any time.
 Entity Any object or component in the system that requires explicit representation in the model
- (e.g., a server, a customer, a machine).
 Attributes The properties of a given entity (e.g., the priority of a waiting customer, the routing of a
- job through a job shop).
 List A collection of (permanently or temporarily) associated entities, ordered in some logical fashion
- (such as all customers currently in a waiting line, ordered by "first come, first served," or by priority).
 Event An instantaneous occurrence that changes the state of a system (such as an arrival of a new cus-
- tomer).
 Event notice A record of an event to occur at the current or some future time, along with any associ-
- ated data necessary to execute the event; at a minimum, the record includes the event type and the event time.
- Event list A list of event notices for future events, ordered by time of occurrence; also known as the future event list (FEL).
- Activity A duration of time of specified length (e.g., a service time or interarrival time), which is
known when it begins (although it may be defined in terms of a statistical distribution).
Delay A duration of time of un
- customer's delay in a last-in-first-out waiting line which, when it begins, depends on future arrivals).
Clock A variable representing simulated time, called CLOCK in the examples to follow.
-

General Principles of Simulation Modelling

World views for developing a model

Event-scheduling world view

- Allow us to control everything; have complete flexibility; know the state of everything anytime
- Easily to be coded up in any programming language or with macros in a spreadsheet
- Become very complicated for large models with lots of different kinds of events, entities and resources

Process-interaction world view

- Focus on the processes that entities undergo
- Analogous to flowcharting
- Employed when using a processoriented simulation language or a simulation software (e.g., ARENA)
- Most discrete-event simulation are executed in the event orientation even though we cannot see it.

Hypothesis testing

For population mean (large sample)

Hypothesis testing

For population mean (small sample), s unknown, population is normally distributed

Hypothesis testing

For population proportion

Hypothesis testing

For population variance, population is normally distributed

Confidence interval

\n- Population is not normal\n
	\n- Large sample size
	\n- $$
	\bar{x} \pm z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}
	$$
	\n\n
\n- (CL Theorem)\n
	\n- Small sample size?
	\n\nUsing Non-parametric techniques

Properties of RNs

- Uniformity
- Independence

Generation of pseudo-random numbers

- Linear Congruential Method
- Combined Linear Congruential Method
- Random-Number Streams

Test for RNs Test for uniformity (Frequency test)

Kolmogorov-Smirnov test

Test for RNs Test for uniformity (Frequency test)

Chi-square test (N>=50)

⚫ Chi-square test uses the sample statistic:

- Approximately the chi-square distribution with *n-1* degrees of freedom (where the critical values are tabulated in Table A.6)
- For the uniform distribution, *Eⁱ* , the expected number in each class is:

$$
E_i = \frac{N}{n}
$$
, where N is the total# of observation

 \bullet Valid only for large samples, e.g., $N \ge 50$

Test for RNs Test for independence (Test for autocorrelation)

- ⚫ Testing the autocorrelation between every l numbers (l is as known as. the lag), starting with the *i th* number
	- The autocorrelation $\rho_{_{jl}}$ between numbers: $R_{_{\it l}}$ $R_{_{\it l+l}}$ $R_{_{\it l+2l}}$ $R_{_{\it l+(M+1)l}}$
	- M is the largest integer such that $i + (M + 1)l \leq N$
- ⚫ Hypothesis:

- If the values are uncorrelated:
- For large values of M, the distribution of the estimator of ρ_{il} , denoted is approximately normal. M is the largest integer such that $i + (M + 1)l \le N$

bothesis:
 $H_0: \rho_{il} = 0, \quad \text{if numbers are independent}$
 $H_1: \rho_{il} \ne 0, \quad \text{if numbers are dependent}$

le values are uncorrelated:

For large values of M, the distribution of the estimato

approximately no

Test for RNs Test for independence (Test for autocorrelation)

• Test statistics is:
$$
Z_0 = \frac{1}{2}
$$

$$
Z^{}_0=\frac{\hat{\rho}^{}_{il}}{\hat{\sigma}^{}_{\hat{\rho}^{}_{il}}}
$$

– *Z⁰* is distributed normally with mean = *0* and variance = *1*, and:

$$
\hat{\rho}_{il} = \frac{1}{M+1} \left[\sum_{k=0}^{M} R_{i+kl} R_{i+(k+1)l} \right] - 0.25
$$

$$
\hat{\sigma}_{\rho_{il}} = \frac{\sqrt{13M+7}}{12(M+1)}
$$

- If ρ_{il} > 0, the subsequence has positive autocorrelation
	- High random numbers tend to be followed by high ones, and vice versa.
- If ρ_{ii} < 0, the subsequence has negative autocorrelation
	- Low random numbers tend to be followed by high ones, and vice versa.

Inverse-transform technique

$$
X = F^{-1}(R)
$$

Continuous distribution: exponential distribution, uniform distribution, triangular distribution, empirical continuous distribution, etc.

Discrete distribution: discrete uniform distribution, geometric distribution, etc.

Inverse-transform technique: $X = F^{-1}(R)$

Exponential distribution

Pdf:

Cdf: $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$ $F(x) = \int_{-\infty}^{x} f(t) dt = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$

$$
1 - e^{-\lambda X} = R
$$

\n
$$
e^{-\lambda X} = 1 - R
$$

\n
$$
-\lambda X = \ln(1 - R)
$$

\n
$$
X = -\frac{1}{\lambda} \ln(1 - R)
$$

Inverse-transform technique: $X = F^{-1}(R)$

Uniform distribution

Pdf:
\n
$$
f(x) = \begin{cases}\n\frac{1}{b-a}, & a \le x \le b \\
0, & \text{otherwise}\n\end{cases}
$$
\nCdf:
\n
$$
F(x) = \begin{cases}\n0, & x < a \\
\frac{x-a}{b-a}, & a \le x \le b \\
1, & x > b\n\end{cases}
$$

$$
X = a + (b - a)R
$$

Inverse-transform technique: $X = F^{-1}(R)$

Triangular distribution

Consider a random variable X that has pdf:

$$
f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2 - x, & 1 < x \le 2 \\ 0, & \text{otherwise} \end{cases}
$$

The cdf is then given by:

$$
F(x) = \begin{cases} 0, & x \le 0 \\ \frac{x^2}{2}, & 0 < x \le 1 \\ 1 - \frac{(2-x)^2}{2}, & 1 < x \le 2 \\ 1, & x > 2 \end{cases}
$$

$$
X = \begin{cases} \sqrt{2R}, & 0 \le R \le \frac{1}{2} \\ 2 - \sqrt{2(1 - R)}, & \frac{1}{2} < R \le 1 \end{cases}
$$

Inverse-transform technique: $X = F^{-1}(R)$

Weibull distribution

Pdf:
\n
$$
f(x) = \begin{cases}\n\frac{\beta}{\alpha^{\beta}} x^{\beta - 1} e^{-(x/\alpha)^{\beta}}, & x \ge 0 \\
0, & \text{otherwise}\n\end{cases}
$$
\nCdf:

$$
F(X) = 1 - e^{-(x/\alpha)^{\beta}}, x \ge 0
$$

$$
X = \alpha [-\ln(1 - R)]^{1/\beta}
$$

Inverse-transform technique: $X = F^{-1}(R)$

Empirical discrete distribution

$$
F(x) = \begin{cases} 0 & x < 0 \\ 0.5 & 0 \le x < 1 \\ 0.8 & 1 \le x < 2 \\ 1.0 & 2 \le x \end{cases}
$$

$$
X = \begin{cases} 0, & R \le 0.5 \\ 1, & 0.5 < R \le 0.8 \\ 2, & 0.8 < R \le 1.0 \end{cases}
$$

Acceptance-rejection technique

Suppose that an analyst needed to devise a method for generating random variates, X, uniformly distributed between 1/4 and 1. One way to proceed would be to follow these steps:

Step 1. Generate a random number R.

Step 2a. If $R \ge 1/4$, accept $X = R$, then go to Step 3.

Step 2b. If $R < 1/4$, reject R, and return to Step 1.

Step 3. If another uniform random variate on [1/4, 1] is needed, repeat the procedure beginning at Step 1. If not, stop

Acceptance-rejection technique

Poisson Distribution

$$
\prod_{i=1}^n R_i \ge e^{-\alpha} > \prod_{i=1}^{n+1} R_i
$$

Step 1. Set $n = 0, P = 1$.

Step 2. Generate a random number *Rn*+1 and replace *P* by *P* · *Rn*+1.

Step 3. If $P < e^{-\alpha}$, then accept $N = n$. Otherwise, reject the current *n*, increase *n* by one, and return to step 2.

Acceptance-rejection technique

Poisson Distribution

Generate three Poisson variates with mean $\alpha = 0.2$. First, compute $e^{-\alpha} = e^{-0.2} = 0.8187$. Next, get a sequence of random numbers R from Table A.1 and follow the previously described Steps 1 to 3:

- **Step 1.** Set $n = 0, P = 1$.
- **Step 2.** $R_1 = 0.4357$, $P = 1 \cdot R_1 = 0.4357$.
- **Step 3.** Since $P = 0.4357 < e^{-\alpha} = 0.8187$, accept $N = 0$.
- **Step 1-3.** $(R_1 = 0.4146 \text{ leads to } N = 0.)$
- **Step 1.** Set $n = 0, P = 1$.
- **Step 2.** $R_1 = 0.8353$, $P = 1 \cdot R_1 = 0.8353$.
- **Step 3.** Since $P > e^{-\alpha}$, reject $n = 0$ and return to Step 2 with $n = 1$.
- Step 2. $R_2 = 0.9952$, $P = R_1 R_2 = 0.8313$.
- **Step 3.** Since $P \ge e^{-\alpha}$, reject $n = 1$ and return to Step 2 with $n = 2$.
- **Step 2.** $R_3 = 0.8004$, $P = R_1R_2R_3 = 0.6654$.
- **Step 3.** Since $P \le e^{-\alpha}$, accept $N = 2$.

Special properties

Some random-variate generation methods are based on features of a particular family of probability distributions. For example:

- Direct transformation for normal and lognormal distributions
- Convolution method
- Beta distribution from gamma distribution

Best luck!

Spring Semester, 2022 – 2023 Midterm Review

