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Infroduction to Simulation

Review questions:

What is a Simulation?

When to and NOT to use Simulation?

What are advantages and disadvantages of Simulation?

What are some areas for applications of Simulation?

What are systems, system environment, and components of a system? Example?
Distinguish discrete and continuous systems! Example?

What are models and some model types of a system?

What are some methods to study systems?
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What are steps in a simulation study?



Infroduction to Simulation

8. What are some methods to study systems?

Experiment with real
system

Experiment with

system modeling

/\

Physical Model

Mathematical Model

/\

Analytical Solutions Simulation Solutions




Problem
formulation

!

Data
collection

Introduction to Simulation
S
T o
9. What are steps in a simulation study? = 7 '
e Four phases: gt
— Problem formulation, setting objective and
overall design (step 1 to 2). A
- Modeling building and data collection (step 3 W
to7) [
- Running of the model (step 8 to 10). . Pdt&

— Implementation (step 11 to 12).

e An iterative process.

Bonus questions!

What is the most important step? Why?

Implementation
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Simulation Examples

Simulation of queueing system

Single-channel queue
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Figure 2.2 Service-just-completed flow diagram.
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Figure 2.3 Unit-entering-system flow diagram.




Simulation Examples

Simulation of queueing system

Single-channel queue

Table 2.10 Simulation Table for Queueing Problem

A B C D E F G H I

Time Since Service Time Time Customer Time Time Customer Idle Time

Last Arrival Arrival Time Service Waits in Queue Service Spends in Svstem of Server

Customer {Minures) Time {Minures) Begins { Minures) Ends (Minutes) {Minures)
| - 0 4 0 ] 4 4 0
2 8 8 | 8 ] g 1 4
3 6 14 4 14 ( 18 4 5
4 1 15 3 18 3 21 6 0
5 8 23 2 23 ] 25 2 2
6 3 26 4 26 0 30 4 1
7 8 34 5 34 ] 39 5 4
8 7 41 4 41 ] 45 4 2
| 2 43 5 45 2 50 7 1]
10 3 46 3 50 4 53 7 0
11 1 47 3 53 6 56 9 0
12 1 48 5 36 8 61 13 0
13 5 53 4 6l 8 65 12 0
14 6 39 | 63 6 66 7 0
15 3 62 5 66 4 71 g 0
16 8 70 4 71 1 75 5 0
17 1 71 3 75 4 78 7 1]
18 2 73 3 78 5 81 8 0
19 4 77 2 81 4 83 (i} 0
20 5 82 3 83 1 86 4 0
68 56 124 18




Simulation Examples

Simulation of queueing system

Single-channel queue

_ total time customers wait in queue (minutes) 56

Average waiting time — = 2.8minutes
total numbers of customers 20
Probability (wait) _ number of customers who wait 13 0.65
total numbersof customers 20
Probability of Idle Server = Total 1dl.e tune o.f selvelar = ﬁ =0.21
total run time of simulation 86
) ) Total Service Time 68 .
Average Service Time — =3 4minutes

N Total Number of customers N 20

. . sum of all times between arrivals 82 .
Average Time between arrivals = = — =4 3minutes

number of arrivals -1

o . total time customers wait in queue 56 :
Average waiting time of those whowait = = — =4 3minutes

total numberof customers that wait 13

total time customersspendin the system 124
total number of customers 20

Average time customerspendsin the system = = 6.2minutes

Or

Average time customer spendsin the system = average waiting time +average service time = 2.8 + 3.4 = 6.2 minutes



Simulation Examples

Simulation of queueing system

 Single-channel queue

 Simulation of a two-server queuing system
Simulation of inventory system

Other examples of simulation



General Principles of Simulation Modelling

Major concepts in simulation

System A collection of entities (e.g., people and machines) that interact together over time to accom-
" plish one or more goals.

Model An abstract representation of a system, usually containing structural, logical, or mathematical
relationships that describe a system in terms of state, entities and their attributes, sets, processes,
events, activities, and delays. '

System state A collection of variables that contain all the information necessary to describe the sys-
tem at any time.

Entity Any object or component in the system that requires explicit representation in the model
(e.g., a server, a customer, a machine).

Attributes The properties of a given entity (e.g., the priority of a waiting customer, the routing of a
job through a job shop).

List A collection of (permanently or temporarily) associated entities, ordered in some logical fashion
(such as all customers currently in a waiting line, ordered by “first come, first served,” or by priority).

Event Aninstantaneous occurrence that changes the state of a system (such as an arrival of a new cus-
tomer).

Event notice A record of an event to occur at the current or some future time, along with any associ-
ated data necessary to execute the event; at a minimum, the record includes the event type and the
event time.

Event list A list of event notices for future events, ordered by time of occurrence; also known as the
future event list (FEL).

Activity A duration of time of spétified length (e.g., a service time or interarrival time), which is

_ known when it begins (although it may be defined in terms of a statistical distribution).

Delay A duration of time of unspecified indefinite length, which is not known until it erds (e.g., a
customer’s delay in a last-in—first-out waiting line which, when it begins, depends on future arrivals).

Clock A variable representing simulated time, called CLOCK in the examples to follow.



General Principles of Simulation Modelling

World views for developing a model

Event-scheduling world view

" Allow us to control everything;
have complete flexibility; know the
state of everything anytime

" Easily to be coded up in any
programming language or with
macros in a spreadsheet

" Become very complicated for
large models with lots of different
kinds of events, entities and
resources

Process-interaction world view

" Focus on the processes that
entities undergo

» Analogous to flowcharting

* Employed when using a process-
oriented simulation language or a
simulation software (e.g., ARENA)

= Most discrete-event simulation are
executed in the event orientation
even though we cannot see it.



Review Statistics

Hypothesis testing

For population mean (large sample)

Two-tailed Test

One-tailed Test

Hypothesis Hy: p =y, Ho: p>po (R <py)

Hy: p# py Hi:p<py (L=p)
Test Statistic X — K,

z, = —=
" s/4/n
Critical points
P == Za/z o Za (Za)
Decision Reject Hy if Reject Hy if
Rules
L >1 or z,.<-Z
t~ ‘a2 tS a2 z, <—-2, (z,>2))




Review Statistics

Hypothesis testing
For population mean (small sample), s unknown, population is normally distributed
Two-tailed Test One-tailed Test
Hypothesis Hy: p=py Ho: p>po (R <py)
Hy: p#pyo Hi:p<=py (B2H)
Test Statisti o
cS atistic . _ X — J7A
" s/4/n
Critical points + tn—l, /o . ()
Decision Rules | Reject Hy if Reject Hy if
1:t > 1:n—l, /2 or tt < _tn—l, a/2 tt < _tn—l,a (tt > tn—l,a)




Review Statistics

Hypothesis testing

For population proportion

Two-tailed Test One-tailed Test

Hypothesis Hy: p=py Hy: p>po (P <pp)

H;: p# Py Hi:p<py(P2po)
Test Statistic . P-py Where q; = 1- pqg

I Podo
N

Critical points

* z a /2 _za(za)
Decision Rules | Reject Hy 1f Reject Hy 1f

LI, OF Z,<—ZI_, o, <—z_ (z,>z)




Review Statistics

Hypothesis testing

For population variance, population is normally distributed

Two-tailed Test

One-tailed Test

Hypothesis H,: 6" =0, Hy: 6" =06 (6 =o6)
H]Z G'I == ﬂzu H1: l!:l-'1 = ﬂ'lu (ﬂ'l = Glu)
Test Statistic .
;  (m—1)s°
If‘ = 3
o,
Critical Points . . ) .
In—l, 1-gx/2 or In—l,ﬂ." 2 Iﬂ— IMEY' (In—l, E)
Decision Fule | Reject Null Hypothesis if Eeject Null Hypothesis if

1 1 1 7
Ir {In—lkl—m';' or I; }IIJ—LE."J

g A A A
< < < 1
It < Iu—l,l—a (Z; = Iu—l, @A




Review Statistics

Confidence interval

* Population is normal * Population is not normal
— If gis known — Large sample size
e Ttrt
Jn
— If 4 is not known, (CL Theorem)

small sample size

" — Small sample size?

n 5
- tn—l:z.-'i T . ; .
n Using Non-parametric techniques

— If o is not known,

large sample size

xtrg

5
! 2 E




Random Numbers

Properties of RNs
* Uniformity
* Independence

Generation of pseudo-random numbers
* Linear Congruential Method

* Combined Linear Congruential Method

e Random-Number Streams



Random Numbers

Test for RNs
Test for uniformity (Frequency test)
Kolmogorov-Smirnov test

Arrange R, from }

; ; ; ; ; — smallest to largest
Step 1: R, . 005 : 014 i 044 [ 081 i 093 | °
i/N L 020 | 040 i 0.60 | 080 | 1.00 s :
.......................................... AN SN S SN S = DA 111V (/) \ el S9N ]

Step 2: i/N— Ry . 015 (026 i 016 i - i 007

R~ (i-1)/N i 005 i - | 004 | 021 i 013

N D =max {R;- (F1)/N} |

Step 3: D =max(D*, D) =0.26
Table A.8 Kolmogorov--Smirnov Critical Values 097 0.13
Step 4: For o =0.05,
Degrees of F)
Freedom C 07k 021
D = 0565 > D (N) Da.10 Do s Do y
@ 1 0950 0975  0.995 : 0.16 S
2 0.776 0.842 0.929 051~
3 0.642 0708  0.828 il Do
4 0.564 0.624 0.733
. . 5 0.510 0.565 0.669 03 0.26
Hence, Hy Is not rejected. 6 0470 0521 0618
7 0.438 0.486 0.577 ’ 0.15
8 0411 0457  0.543 ok
9 0.388 0.432 0.514 0.05
10 0.368 0410 0490 T o 03 05 05 05 07 05 09 10 )

Ry Rg R Ry Rs)



Random Numbers

Test for RNs
Test for uniformity (Frequency test)
Chi-square test (N>=50)

e Chi-square test uses the sample statistic:

[ n is the # of classes ]j:

—\

o —

E T—/ 0 )
i O, is the observed
#inthe ith class |

- Approximately the chi-square distribution with n-1 degrees of freedom (where the
critical values are tabulated in Table A.6)

N
; /( E, is the expected
Ef)_/_ #inthe ith class |

\
# O
7=
=1

- For the uniform distribution, E;, the expected number in each class is:
N

E, =—, where Nis the total# of observation
n

e Valid only for large samples, e.g., N >= 50



Random Numbers

Test for RNs
Test for independence (Test for autocorrelation)
e Testing the autocorrelation between every | numbers (I is as known as. the lag), starting
with the i number
- The autocorrelation p, between numbers: R, R.,;, Riio Riyai1)
- Misthe largestinteger such that i +(M +1)I < N

e Hypothesis:
H,: p, =0, if numbers are independent

H, . p, #0, if numbers are dependent

e |fthe values are uncorrelated:

- For large values of M, the distribution of the estimator of p,, denoted is
approximately normal.



Random Numbers

Test for RNs
Test for independence (Test for autocorrelation)

e Jest statisticsis: Z,= Pil

N

05

- Z,is distributed normally with mean = 0 and variance = 1, and:

M+1|=

n 13M +7
g =
a12(M +1)

o If p,>0,the subsequence has positive autocorrelation

. 1 |&
Pu=3"7 |:Z Ry } —0.25

- High random numbers tend to be followed by high ones, and vice versa.
o If p,<0,the subsequence has negative autocorrelation

- Low random numbers tend to be followed by high ones, and vice versa.



Random-Variate Generation

Inverse-transform technique
X =F1(R)

Continuous distribution: exponential distribution, uniform distribution, triangular
distribution, empirical continuous distribution, etc.

Discrete distribution: discrete uniform distribution, geometric distribution, etc.



Random-Variate Generation

Inverse-transform technique: X = F~1(R)

Exponential distribution
Pdf: Cdf:

re ™™, x>0 l—e ™, x>0

f(x):{oj o r=0 F(x)=f f(r)dr={0} <0

Solve the equation F(X) = R for X in terms of R.

l—e ™ =R
e =1—R
— X =In(1 — R)

1
X=——In(1-R
7 In( )



Random-Variate Generation

Inverse-transform technique: X = F~1(R)

Uniform distribution

Pdf: 1  a<x<b Cdf:
fx)y=4{ b—a
0, otherwise

Solve the equation F(X) = R for X in terms of R.

X=a+ (b—a)R

F(x) = 1




Random-Variate Generation

Inverse-transform technique: X = F~1(R)

Triangular distribution

Consider a random variable X that has pdf: The cdf is then given by:

[ 0, x<0
X, 0<x<l1 2
f(x)= z_x} I{IEZ P O{X":l
0 otherwise F(x) = 2 2 — x)2
| 1— , l<x<2?2
2
| 1.» 1}2

Solve the equation F(X) = R for X in terms of R.

V2R 0<R<;
X =
2-J201—-R), 3<R=<1



Random-Variate Generation

Inverse-transform technique: X = F~1(R)
Weibull distribution

Pdf: Cdf:
B 1w
fo=1 a8 ¢ *=0 FX)=1-¢" x>0

0, otherwise

Solve the equation F(X) = R for X in terms of R.

X = a[—In(1 = R)]'/P



Random-Variate Generation

Inverse-transform technique: X = F~1(R)

Empirical discrete distribution

Pf: | x p) F) Cdf 0 v<b
I 030 0.80 1-0 , = X <
2 0.20 1.00 [ e =X

Solve the equation F(X) = R for X in terms of R.

0, R<05
X={1 05<R<0S8
2, 08<R<1.0



Random-Variate Generation

Acceptance-rejection technique

Suppose that an analyst needed to devise a method for generating random variates,
X, uniformly distributed between 1/4 and 1. One way to proceed would be to follow
these steps:

Step 1. Generate a random number R.
Step 2a.If R = 1/4, accept X = R, then go to Step 3.
Step 2b. If R < 1/4, reject R, and return to Step 1.

Step 3. If another uniform random variate on [1/4, 1] is needed, repeat the
procedure beginning at Step 1. If not, stop



Random-Variate Generation

Acceptance-rejection technique

Poisson Distribution

n+1

lilR,' > e Y > l_[R,'

Step 1.5etn=0,P=1.
Step 2. Generate a random number Rn+1 and replace P by P - Rn+1.
Step 3. If P < e %, then accept N = n. Otherwise, reject the current n, increase n by one,

and return to step 2.



Random-Variate Generation

Acceptance-rejection technique

Poisson Distribution

Generate three Poisson variates with mean o = (.2. First, compute e ™ = e 92 — (.8187. Next, get
a sequence of random numbers R from Table A.1 and follow the previously described Steps 1 to 3:

Stepl. Setn=0,P = 1.

Step2. R, =04357,P=1-R; =0.4357.

Step 3. Since P = 0.4357 < ¢ = 0.8187, accept N = 0.

Step 1-3. (R} =0.4146 leadsto N = 0.)

Stepl. Setn=0,P =1.

Step2. R, =0.8353,P=1-R; =0.8353.

Step 3. Since P > ¢™“, reject n = 0 and return to Step 2 withn = 1.
Step 2. R, =0.9952, P = R|R, = 0.8313.

Step 3. Since P > ¢ “, reject n = 1 and return to Step 2 with n = 2.
Step 2. R; = 0.8004, P = R1R;R3; = 0.6654.

Step 3. Since P < e %, accept N = 2.



Random-Variate Generation

Special properties
Some random-variate generation methods are based on features of a particular
family of probability distributions. For example:

- Direct transformation for normal and lognormal distributions
- Convolution method
- Beta distribution from gamma distribution



Best luck:

Spring Semester, 2022 - 2023
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