Simulation Models in Industrial Engineering Semester: Spring – 2023

Homework 3: Random-Variate Generation

The objective of Homework 3 is for students to develop understanding of generating samples from a specified distribution as input to a simulation model and to practice some commonly-used techniques for generating random variates (Inverse-transform technique and Acceptance-rejection technique).

For submission, kindly submit your work for all questions in 1 PDF file and 1 Excel file.

Exercise 1: Random-variate generation using Inverse-transform technique

Given random numbers $R_i = \{0.1306, 0.0422, 0.6597, 0.7965, 0.8213\}.$

Develop a random-variate generator and generate five values of the random variate for each of the following cases:

- a. Random variables follow an exponential distribution with $\lambda = 2$.
- b. Random variables are uniformly distributed on the interval [1,3].
- c. Random variables follow a triangular distribution with endpoints (0,4) and mode at 2.
- d. Distribution of variables is given as:

Observed value	Frequency of occurrence
50	0.24
52	0.20
45	0.12
55	0.09
53	0.35

Exercise 2: Random-variate generation using Acceptance-Rejection technique

Given $R_i = \{0.102, 0.047, 0.334, 0.684, 0.812\}$. Generate five Poisson variates with mean $\alpha = 0.3$.